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Abstract. We show that all subvarieties of a quotient of a bounded symmetric

domain by a sufficiently small arithmetic discrete group of automorphisms are
of general type. This result corresponds through the Green-Griffiths-Lang’s

conjecture to a well-known result of Nadel.

1. Introduction

1.1. Main result. An arithmetic locally symmetric variety is by definition a com-
plex analytic space which is isomorphic to a quotient of a bounded symmetric
domain D by an arithmetic lattice Γ ⊂ Aut(D), see section 5.1 for a reminder.
By a theorem of Baily-Borel [BB66], every arithmetic locally symmetric variety
admits a canonical structure of algebraic variety. In this situation, Tai [AMRT75]
and Mumford [Mum77] have shown that there exists a subgroup Γ′ ⊂ Γ of finite
index such that the algebraic variety Γ′\D is of general type. Recall that an irre-
ducible smooth projective complex variety X is said of general type if it has enough
pluricanonical forms to make the canonical rational maps X 99K P(H0(X,ω⊗mX )∨)
birational onto their images for m� 1. In that case, every smooth projective com-
plex variety birational to X is of general type too. An irreducible complex algebraic
variety X, not necessarily projective or smooth, is then said of general type if any
smooth projective complex variety birational to X is of general type.

The following theorem, which is our main result in this paper, strengthens consid-
erably the result of Tai and Mumford.

Theorem 1.1 (Main result). Let D be a bounded symmetric domain and Γ ⊂
Aut(D) an arithmetic lattice. Then there exists a subgroup Γ′ ⊂ Γ of finite index
such that all subvarieties of Γ′\D are of general type.

Remarks 1.2. (i) Theorem 1.1 follows from a stronger statement: it follows from
Theorem 5.3 that there exists a subgroup Γ′ ⊂ Γ of finite index such that any
smooth projective variety birational to a subvariety of Γ′\D has a big cotangent
bundle (in the sense that the tautological line bundle on the corresponding projec-
tive bundle is big, see Definition 2.6). But a smooth projective variety with a big
cotangent bundle is of general type by the work of Campana, Peternell and Păun,
cf. Theorem 2.9.
(ii) Note that in general it is necessary to take a finite index subgroup. Already for
D = ∆ the unit disk in C and Γ(n) := ker(Sl(2,Z)→ Sl(2,Z/nZ)), it is well-known
and easy to check that the level-n modular curve Y (n) := Γ(n)\∆ is of general type
exactly when n > 6.

Date: June 8, 2020.

1



2 Y. BRUNEBARBE

(iii) If D is a bounded symmetric domain and Γ ⊂ Aut(D) an arithmetic lattice,
then by the results of Tai and Mumford already mentioned there exists a subgroup
Γ′ ⊂ Γ of finite index such that Γ′\D is of general type. Moreover, it follows from
the main result of [Nad89] (see Theorem 1.9 below) that Γ′ can be chosen so that all
subvarieties of dimension 1 of Γ′\D are of general type. Our proof of Theorem 1.1
gives a new approach to these results that works also for subvarieties of intermediate
dimensions.
(iv) When Γ is a cocompact lattice, Theorem 1.1 is a consequence of [BKT13,
Theorem 3.1]. In this case, any torsion-free subgroup Γ′ ⊂ Γ of finite index satisfies
the conclusion.

As a direct application of Borel’s algebraization theorem [Bor72, Theorem 3.10],
one obtains:

Corollary 1.3. Let D be a bounded symmetric domain and Γ ⊂ Aut(D) an arith-
metic lattice. Then there exists a subgroup Γ′ ⊂ Γ of finite index such that any
projective complex variety which admits a non-empty Zariski open subset with an
immersive holomorphic map to Γ′\D is of general type.

Note that by [BKT13, Theorem 3.1] a projective complex variety endowed with
a (everywhere defined) generically immersive holomorphic map to a quotient of a
bounded symmetric domain by a torsion-free discrete group Γ of automorphisms
is of general type. More generally, if we assume that the variety is only quasi-
projective, then it has to be of log-general type by [Bru18, Theorem 0.2]. Corollary
1.3 refines greatly this last result when Γ is an arithmetic lattice. Let us emphasize
here that the strategy leading to the proof of Theorem 1.1 is different from the
approach of [BKT13] and [Bru18]. In particular, this strategy can be used to give
a new proof of [BKT13, Theorem 3.1] and [Bru18, Theorem 0.2].

Given two positive intergers g and n, let Ag(n) denote the moduli stack of princi-
pally polarized abelian varieties of dimension g with a level-n structure. The cor-
responding coarse moduli space Ag(n) is an arithmetic locally symmetric variety
whose associated bounded symmetric domain D is the Harish-Chandra’s realization
(cf. [Mok89, Theorem 1, p.94]) of the Siegel half-space of rank g. In this special
case we prove the more precise statement:

Theorem 1.4. For any g ≥ 1 and any n > 12 · g, every subvariety of Ag(n) is of
general type.

It follows immediately from Theorem 1.4 that a smooth complete complex algebraic
variety which admits a non-empty Zariski-open subset parameterizing a family of
principally polarized abelian varieties of dimension g with a level-n structure and
whose corresponding period map is generically immersive is of general type as soon
as n > 12 · g (we will show more precisely that its cotangent bundle is big, cf.
Theorem 4.3).

Remarks 1.5. (i) There is an important literature about the Kodaira dimension of
the Ag(n) and their subvarieties. In particular, it is known that for g ≥ 7 the coarse
moduli space Ag (and a fortiori every Ag(n) for n ≥ 1) is of general type. This
was first proved for g divisible by 24 by Freitag [Fre77] and then improved to g ≥ 9
by Tai [Tai82], g ≥ 8 by Freitag [Fre83] and finally g ≥ 7 by Mumford [Mum83].
On the other hand, Ag is known to be unirational for g ≤ 5 (due to [Don84] for
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g = 5, [Cle83] for g = 4, classical for g ≤ 3). Later, Weissauer [Wei86] proved that
for g ≥ 13 every subvariety of the coarse moduli space Ag of codimension ≤ g− 13
is of general type. A fortiori, the same result holds for all Ag(n) with g ≥ 13 and
n ≥ 1. However, Ag always contains the codimension g − 1 subvariety of negative
Kodaira dimension A1×Ag−1 (being uniruled). On the other hand, it follows from
[Nad89, Rou16] that any curve in Ag(n) is of general type when n > 6 · g.
(ii) As this paper was being written, Abramovich and Várilly-Alvarado posted a
preprint [AVA18] where they prove (cf. Theorem 1.4 in op. cit.) that for any closed
subvariety X in Ag, there exists a level nX (a priori depending on X) such that
the irreducible components of the preimage of X in Ag(n) are of general type for
n > nX . Our result gives an explicit nX which works for all X.

1.2. The geometric Lang conjecture for the Baily-Borel compactification
of arithmetic locally symmetric varieties. Given an arithmetic locally sym-

metric variety Γ\D, we denote by Γ\D
∗

its Satake-Baily-Borel compactification. It
is a normal projective variety which contains Γ\D as a Zariski-open dense subset,

and the boundary Γ\D
∗
− Γ\D is stratified by arithmetic locally symmetric vari-

eties. For example, in the case of Ag(n), the projective variety Ag(n)
∗

admits a
natural stratification by locally closed subvarieties, each of which being canonically
isomorphic to Ag′(n) for some 0 ≤ g′ ≤ g [FC90, Theorem 2.5, p.252]. Therefore,
as a direct application of Theorem 1.4, one obtains:

Corollary 1.6. For any g ≥ 1 and any n > 12 · g, every subvariety of Ag(n)
∗

is
of general type.

Similarly, as an application of Theorem 1.1 and the construction of the Baily-Borel
compactification, one can show:

Corollary 1.7. Let D be a bounded symmetric domain and Γ ⊂ Aut(D) an arith-
metic lattice. Then there exists a subgroup Γ′ ⊂ Γ of finite index such that all

subvarieties of Γ′\D
∗

are of general type.

We would like now to explain how our results fits in the framework of Lang’s
conjectures. Recall that a complex analytic space X is called hyperbolic in the sense
of Brody if there is no non-constant holomorphic map C→ X. Given a projective
complex variety X, one can measure the deviation from Brody-hyperbolicity of the
corresponding analytic space by introducing its exceptional subvariety Exc(X) ⊂
X, which is by definition the Zariski closure of the union of the images of all
non-constant holomorphic maps C → X. A famous conjecture of Green-Griffiths
and Lang predicts that this subset has an interpretation in the realm of algebraic
geometry:

Conjecture 1.8 (Green-Griffiths, Lang, cf. [GG80, Lan86]). Let X be an ir-
reducible projective complex variety. Then X is of general type if and only if
Exc(X) 6= X.

Observe that Conjecture 1.8 implies that given a projective complex variety X,
the irreducible components of its exceptional locus Exc(X) are not of general type,
and that any irreducible subvariety of X not contained in Exc(X) is of general type.

Conjecture 1.8 is known for some special classes of varieties, including subvari-
eties of abelian varieties, smooth projective surfaces with a big cotangent bun-
dle and subvarieties of a generic hypersurface of high degree. See respectively
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[Blo26, Och77, Kaw80], [Bog77, McQ98], [Pac04, Bro17] and the references therein.

The exceptional subvariety of compactifications of arithmetic locally symmetric
varieties has been studied by Nadel, see also [Nog91, HT06, Rou16].

Theorem 1.9 (Nadel, [Nad89]). Let D be a bounded symmetric domain and Γ ⊂
Aut(D) an arithmetic lattice. Then there exists a subgroup Γ′ ⊂ Γ of finite index

such that the image f(C) of any non-constant holomorphic map f : C → Γ′\D,

where Γ′\D is any compactification of Γ′\D, is contained in Γ′\D − Γ′\D.

In other words, the exceptional subvariety of any compactification Γ′\D is included

in the boundary Γ′\D−Γ′\D. Using the canonical stratification of the Baily-Borel

compactification by arithmetic locally symmetric varieties, it follows that Γ′′\D
∗

is Brody hyperbolic for some Γ′′ ⊂ Γ′ of finite index. Corollary 1.7 is then the
corresponding statement predicted by Conjecture 1.8.

1.3. Conjectural arithmetic implications for Shimura varieties. Our main
result has some (partly conjectural) implications for Shimura varieties that we now
briefly discuss. Let (G, X) be a Shimura datum: G is a reductive Q-group and X
a G(R)-conjugation class of morphisms S = ResC/RGm → GR satisfying Deligne’s
axioms, cf. [Del71, Del79]. If K is a compact-open subgroup of G(Af ), one has the
corresponding Shimura variety:

ShK(G, X)C = G(Q)\(X ×G(Af )/K),

which is a finite disjoint union of arithmetic locally symmetric varieties (note that
the corresponding arithmetic groups are of congruence type). As before, its Baily-

Borel compactification ShK(G, X)C
∗

is a normal projective complex variety which

contains ShK(G, X)C as a Zariski-open dense subset, the boundary ShK(G, X)C
∗
−

ShK(G, X)C is stratified by Shimura subvarieties, and Corollary 1.7 becomes in this
framework

Corollary 1.10. Let (G, X) be a Shimura datum and K be a compact-open sub-
group of G(Af ). There exists a compact-open subgroup K ′ ⊂ K ⊂ G(Af ) such that

any subvarieties of ShK′(G, X)C
∗

is of general type.

Following Bombieri and Lang, the exceptional subvariety should also have an arith-
metic significance:

Conjecture 1.11 (Bombieri, Lang). If F is a subfield of C finitely generated over
Q and X a projective variety defined over F , then the set of F -rational points of
X lying outside of Exc(XC) is finite.

It is not difficult to verify that if Conjecture 1.8 is true, then the exceptional locus
Exc(X) of a complex variety X is defined over any field of definition of X.

By the work of Shimura, Deligne, Milne, Shih and Borovoi, ShK(G, X)C admits
a canonical model over the reflex field E(G, X) associated to the Shimura datum

(G, X). Moreover, its Baily-Borel compactification ShK(G, X)
∗

is defined over the
same field. Therefore, as a consequence of Bombieri-Lang conjecture, one obtains
the following
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Conjecture 1.12. Let (G, X) be a Shimura datum and K be a compact-open
subgroup of G(Af ). There exists a compact-open subgroup K ′ ⊂ K ⊂ G(Af ) such

that for any finitely generated extension F of E(G, X), the set ShK′(G, X)
∗
(F ) of

F -points of ShK′(G, X)
∗

is finite.

See [UY10] for a partial result in direction of this conjecture.

In the case of Ag, in view of Corollary 1.6, the Bombieri-Lang conjecture would
have the following consequence (compare with [AVA17, AVA18]):

Conjecture 1.13. For any g ≥ 1, any n > 12 · g and any field F finitely generated
over Q, there is only a finite number of isomorphism classes of principally polarized
abelian varieties defined over F of dimension g with a level-n structure.

1.4. Organisation of the paper. Our proof of Theorem 1.1 relies strongly on
Hodge theory. We first prove in section 3 a criterion (Theorem 3.3) insuring that
an algebraic variety supporting a variation of Hodge structure of a special form is
of general type. Our proof of this criterion is reminiscent of a strategy introduced
by Viehweg and Zuo in their study of hyperbolicity properties of moduli spaces of
canonically polarized varieties [VZ02]. We then verify this criterion for Siegel mod-
ular varieties of high level in section 4 and for general arithmetic locally symmetric
varieties in section 5. In the Siegel case, this is done by looking at the variation
of Hodge structure coming from the middle degree relative cohomology of the uni-
versal family of abelian varieties parametrized by Ag. In the general case, we use
the canonical variation of Hodge structure of Calabi-Yau type constructed on any
bounded symmetric domain by Gross [Gro94] and Sheng-Zuo [SZ10].
There are two competing notions of bigness for torsion-free coherent sheaves in the
literature. Since we use both in this paper, we recall their definitions in section 2
and prove a result about them (Lemma 2.5) that we couldn’t find in the literature.

1.5. Notations. In this paper, a smooth log pair (X,D) is a smooth complex
algebraic variety X together with D ⊂ X a union of smooth divisors crossing
normally. A log pair (X,D) is said projective when X is projective. A morphism
of log pairs f : (X,D)→ (Y,E) is a morphism f : X → Y such that f−1(E) ⊂ D.
A (projective smooth) log-compactification of a smooth complex variety U is a
projective smooth log pair (X,D) with an identification X−D ' U . In the sequel,
all varieties will supposed to be irreducible.

2. Different notions of positivity for torsion-free sheaves

In this section, we recall for the reader convenience different positivity notions for
torsion-free sheaves on smooth projective complex varieties that we will use later
in this paper.

2.1. We begin with some notions due to Viehweg. For details and proofs, the
reader is referred to [Vie83, Lemma 1.4] and [Vie95, p.59-67].

Definition 2.1. Let X be a complex quasi-projective scheme. A coherent sheaf F
onX is globally generated at a point x ∈ X if the natural map H0(X,F)⊗COX → F
is surjective at x.
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Definition 2.2 (Viehweg). Let X be a smooth projective complex variety and F
a torsion-free sheaf on X. Let i : V ↪→ X denotes the inclusion of the biggest open
subset on which F is locally free.

(1) We say that F is weakly positive over the dense open subset U ⊂ V if for
every ample invertible sheaf H on X and every positive integer α > 0 there

exists an integer β > 0 such that Ŝα·βF ⊗OX
Hβ is globally generated over

U .
(2) We say that F is Viehweg-big over the dense open subset U ⊂ V if for any

line bundle H there exists γ > 0 such that ŜγF ⊗ H−1 is weakly positive
over U .

Here the notation ŜkF stands for the reflexive hull of the sheaf SkF , i.e. ŜkF =
i∗(S

ki∗F).
We say that F is weakly positive (resp. Viehweg big) if there exists a dense open
subset U ⊂ V such that F is weakly positive (resp. Viehweg big) over U .

Remark 2.3. If F is locally free, then F is nef if and only if it is weakly positive
over X, and F is ample if and only if it is Viehweg-big over X.

Lemma 2.4 (Viehweg). Let F and G be torsion-free sheaves on a smooth projective
complex variety X.

(i) If F → G is a morphism, surjective over U , and if F is weakly positive over
U , then G is weakly positive over U .

(ii) Let f : Y → X be a morphism between two smooth projective complex
varieties. If F is weakly positive over U ⊂ X and f−1(U) is dense in Y ,
then f∗F/(f∗F)tors is weakly positive over f−1(U).

(iii) If F → G is a morphism, surjective over U , and if F is Viehweg-big over
U , then G is Viehweg-big over U .

(iv) If F is weakly positive and H is a Viehweg-big line bundle, then F ⊗H is
Viehweg-big.

(v) Let f : Y → X be a morphism between two smooth projective complex
varieties, which is finite over an open V ⊂ X. If F is Viehweg-big over
U and f−1(U ∩ V ) is dense in Y , then f∗F/(f∗F)tors is Viehweg-big over
f−1(U ∩ V ).

2.2. We introduce now a weaker notion of bigness. Let E be a vector bundle on a
smooth projective complex variety X. Let π : P(E) := ProjOX

(Sym E)→ X be the
projective bundle of one-dimensional quotients of E and OE(1) be the tautological
line bundle which fits in an exact sequence π∗E → OE(1)→ 0.

Lemma 2.5. The following assertions are equivalent:

(1) The line bundle OE(1) is Viehweg-big.
(2) For some (resp. any) Viehweg-big line bundle H, there exists an injective

map 0→ H→ SkE for some k > 0.
(3) For some (resp. any) Viehweg-big torsion-free sheaf F , there exists a non-

zero map F → SkE for some k > 0.

Definition 2.6. A vector bundle E on a smooth projective complex variety X is
called big (in the sense of Hartshorne) if it satisfies the equivalent conditions of
Lemma 2.5.
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Lemma 2.5 implies that a Viehweg-big vector bundle is big, but the converse is not
true (consider for example the rank 2 vector bundle O(1) ⊕ O(−1) on P1). Note
however that the two notions coincide for line bundles.

Proof of Lemma 2.5. First observe that given a (non necessarily Viehweg-big) torsion-
free sheaf F on X and locally-free sheaf E such that the line bundle OE(1) is
Viehweg-big, there exists a non-zero map F → SkE for any sufficiently big k. In-
deed, it is sufficient to show the existence of a section of OE(k) ⊗ π∗F∨ for any
k � 1, which follows from [Laz04a, Example 2.2.9]. In particular, this shows that
(1) =⇒ (3).
Let us now show (3) =⇒ (2). Let i : V ↪→ X be the inclusion of the biggest
open subset on which F is locally free. Given any ample line bundle H, there exists

γ > 0 such that ŜγF ⊗ H−1 is weakly positive. Therefore, there exists an integer

β > 0 such that Ŝ2·β(ŜγF⊗H−1)⊗OX
Hβ ' Ŝ2·β(ŜγF)⊗OX

H−2β+β is generically

globally generated, as well as the quotient sheaf Ŝ2·β·γF ⊗OX
H−β . This shows

the existence of a generically surjective map ⊕Hβ → Ŝ2·β·γF . On the other hand,
the non-zero map F|V → SkE|V corresponds to a non-zero map (π∗F)|π−1(V ) →
OE(k)|π−1(V ), which in turn provides a non-zero map (S2·β·γπ∗F)|π−1(V ) → OE(2 ·
β ·γ ·k)|π−1(V ), or equivalently a non-zero map S2·β·γF|V → S2·β·γ·kE|V . Finally, by

composing the generically surjective map ⊕Hβ → Ŝ2·β·γF with the non-zero map
i∗(S

2·β·γF|V )→ i∗(S
2·β·γ·kE|V ), we get a non-zero map ⊕Hβ → S2·β·γ·kE , hence a

non-zero map Hβ → S2·β·γ·kE .
Let us finally show (2) =⇒ (1), following [Laz04b, Example 6.1.23]. Assume that
there exists an injective map 0→ H→ SkE for some k > 0 (using Kodaira’s lemma,
cf. [Laz04a, Proposition 2.2.6], one can assume that H is ample). Equivalently, the
line bundle OE(k) ⊗ π∗H−1 has a non-zero section. On the other hand, as OE(1)
is relatively ample, OE(1) ⊗ π∗H is ample (cf. [Laz04a, Proposition 1.7.10]). It
follows that OE(k + 1) = (OE(k)⊗ π∗H−1)⊗OE(1)⊗ π∗H is big. �

2.3. Complex algebraic varieties with maximal cotangent dimension.

Definition 2.7. A complex algebraic variety X is said to have maximal cotan-
gent dimension if any smooth projective complex variety birational to X has a big
cotangent bundle.

If X is a smooth projective complex variety with maximal cotangent dimension,
then any smooth projective complex variety birational to X has the same property,
cf. [Sak79].

Lemma 2.8. Let f : X → Y be a generically finite and dominant algebraic map
between two complex algebraic varieties. If Y has maximal cotangent dimension,
then the same is true for X.

Theorem 2.9 (Campana-Peternell, Campana-Păun, [CP15], see also [Cla17, Corol-
lary 2.24] and the references therein). Any complex algebraic variety of maximal
cotangent dimension is of general type.

3. A Hodge-theoretic criterion for hyperbolicity

In this section we explain a Hodge-theoretic criterion for proving that a variety is
of general type. Before stating the criterion, we need to introduce a few definitions.
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Definition 3.1. Let V be a complex vector space of finite dimension. A (complex)
Hodge structure (of weight zero) on V is a decomposition V =

⊕
p∈Z V

p. A polar-
ization of a complex Hodge structure is a non-degenerate hermitian form h on V
making the decomposition V =

⊕
p∈Z V

p orthogonal, such that the restriction of h
to V p is positive definite for p even and negative definite for p odd. The associated
Hodge filtration is the decreasing filtration F on V defined by F p :=

⊕
q≥p V

q.

If V underlies a complex Hodge structure polarized by h, then the Hodge filtration
determines the Hodge structure thanks to the formula:

V p = F p ∩ (F p+1)⊥h .

Therefore it is equivalent to give the Hodge decomposition of V or the associated
Hodge filtration.

Definition 3.2 (Log C-PVHS). Let X be a complex manifold and D ⊂ X be a
normal crossing divisor. A log complex polarized variation of Hodge structure (log
C-PVHS) on the log-pair (X,D) consists of the following data:

• A holomorphic vector bundle V on X endowed with a connection ∇ with
logarithmic singularities along D.
• An exhaustive decreasing filtration F r

indexed by Z on V by holomorphic
subbundles (the Hodge filtration), satisfying Griffiths transversality

∇Fp ⊂ Fp−1 ⊗ Ω1
X(logD).

• a ∇-flat non-degenerate hermitian form h on V|X−D
such that for all s ∈ X − D the filtered vector space (Vs,F

r
s ) defines a Hodge

structure polarized by hs.

When D = ∅, we recover the notion of complex polarized variation of Hodge struc-
ture, cf. [Del87, Sim92].

We can now state the main result of this section.

Theorem 3.3. Let V = (V,∇,F r
, h) be a log C-PVHS of length w on a projective

smooth log pair (X̄,D) with nilpotent residues along the irreducible components of
D. Assume that

(1) the smallest nonzero Hodge subbundle Fmax is a line bundle,
(2) the line bundle Fmax(−w ·D) is big.

Then the cotangent bundle of X̄ is big (hence a fortiori X̄ is of general type).

By definition, if [a, b] is the smallest interval such that GriFV = 0 for i /∈ [a, b], then
the length of V is the integer b − a and Fmax := Fb. Note that by renumbering
the Hodge filtration, one can always assume that a = 0 and b = w.

By setting E := GrFV and θ := GrF∇, we define a system of log Hodge bundles
(E , θ). It consists of a holomorphic vector bundle E on X̄ with a decomposition
E =

⊕
p∈Z Ep as a sum of holomorphic subvector bundles Ep := Fp/Fp+1, and

a holomorphic 1-form θ ∈ Ω1
X̄

(logD) ⊗ End(E) (the Higgs field) which satisfies

θ ∧ θ = 0 ∈ Ω2
X̄

(logD)⊗ End(E) and θ(Ep) ⊂ Ep−1 ⊗ Ω1
X̄

(logD).

The Higgs field θ corresponds to an OX̄ -linear morphism φ : TX̄(− logD) →
End(E). The condition θ∧θ = 0 implies that for every k ≥ 1, the induced morphism
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TX̄(− logD)⊗k → End(E) factorizes through SymkTX̄(− logD).

Before giving the proof of Theorem 3.3, let us recall the following weak positivity
statement proved by Popa and Wu [PW16, Corollary 3.4] as an easy consequence
of previous results of Zuo [Zuo00, Theorem 1.2] and the author [Bru18, Theorem
1.6]. See also [Bru17] for further developments.

Theorem 3.4. Consider a log C-PVHS on a projective smooth log pair (X̄,D)
with nilpotent residues along the irreducible components of D, and denote by (E , θ)
the corresponding system of log Hodge bundles. If A is a coherent subsheaf of E
contained in the kernel of the Higgs field θ, then its dual A∨ is a weakly positive
torsion-free sheaf.

Proof of Theorem 3.3. With the notations already introduced, and up to renum-
bering the Hodge filtration, one has Ew = Fmax. For every integer k ≥ 0, the
k-iterated Higgs field defines a morphism of OX̄ -modules

φk : SymkTX̄(− logD)⊗OX̄
Ew → Ew−k.

Since φk = 0 when k ≥ w + 1, there is a largest integer k ≤ w for which the
map φk is non-zero. Note that k ≥ 1: otherwise the line bundle Fmax would be
contained in the kernel of the Higgs field, hence its dual would be weakly positive
by Theorem 3.4. But then the line bundle OX̄ = Fmax ⊗ (Fmax)∨ would be big
(by the condition (2) the line bundle Fmax(−w ·D) is big, hence a fortiori Fmax is
big too), a contradiction.

Denote by N the image of φk. It is a coherent subsheaf of Ew−k contained in the
kernel of θ. It follows from Theorem 3.4 that its dual N∨ is a weakly positive
torsion-free coherent sheaf. From φk we get a non-zero morphism

N∨ ⊗OX̄
Ew → SymkΩ1

X̄(logD).

By tensoring with the line bundle OX̄(−w ·D), this provides a non-zero morphism

N∨ ⊗OX̄
Ew(−w ·D)→ SymkΩ1

X̄(logD)⊗OX̄
OX̄(−w ·D).

Since k ≤ w, we have an inclusion of sheaves

SymkΩ1
X̄(logD)⊗OX̄

OX̄(−w ·D) ⊂ SymkΩ1
X̄ ,

hence finally we obtain a non-zero morphism

N∨ ⊗OX̄
Ew(−w ·D)→ SymkΩ1

X̄ .

Since N∨ is weakly positive and Ew(−w · D) is big, it follows by Lemma 2.4 (iv)
that the left-hand side is Viehweg-big, therefore by Lemma 2.5 the vector bundle
Ω1
X̄

is big. �

4. Hyperbolicity of Siegel modular varieties

Let g and n be two positive integers. We denote by Ag(n) the moduli stack of prin-
cipally polarized complex abelian varieties with a level-n structure, and by Ag(n)
the corresponding coarse moduli space. Recall that a level-n structure on a princi-
pally polarized abelian variety A of dimension g over a field k of characteristic zero
is a 2g-tuple of points in A(k) which generate the subgroup of n-torsion points in
A(k̄) and form a symplectic basis with respect to the Weil pairing. From now on we
assume that n ≥ 3, so that Ag(n) = Ag(n) is a smooth quasi-projective complex



10 Y. BRUNEBARBE

variety. Let π : Xg(n) → Ag(n) be the universal family of principally polarized
abelian varieties with a level-n structure. The complex local system Rgπ∗(CXg(n))

underlies a canonical structure of C-PVHS (which in this case has even a canonical
Z-structure) that extends canonically to any smooth projective toroidal compacti-
fication Āg(n) as a log C-PVHS. More precisely, denoting by D the simple normal
crossing boundary divisor Āg(n)−Ag(n), we obtain a log C-PVHS on (Āg(n), D) as
follows. Since n ≥ 3, the monodromy at infinity of the local system Rgπ∗(CXg(n))
is unipotent, hence the associated flat bundle has a canonical Deligne extension
(V,∇) with nilpotent residues along the irreducible components of D. Moreover,
the nilpotent orbit theorem of Schmid [Sch73] implies that the Hodge filtration
extends as a filtration F of V by subbundles. We obtain in this way a log C-PVHS
on (Āg(n), D) with nilpotent residues along the irreducible components of D. It is
well-known that its smallest Hodge subbundle L := Fmax is the canonical extension
to Āg(n) of the Hodge line bundle π∗(ωXg(n)/Ag(n)) on Ag(n).

As a direct application of Theorem 3.3, we obtain the following criterion.

Theorem 4.1. If the line bundle L(−g ·D) on Āg(n) is Viehweg-big over Ag(n),
then all subvarieties of Ag(n) are of maximal cotangent dimension (hence a fortiori
of general type).

Remark 4.2. Since L⊗(g+1) is isomorphic to the log-canonical bundle ωĀg(n)(D) of

(Āg(n), D), the line bundle L(−g ·D) is Viehweg-big over Ag(n) exactly when the
line bundle ωĀg(n)((1− g(g + 1)) ·D) is Viehweg-big over Ag(n).

Proof of Theorem 4.1. Let Y be a subvariety of Ag(n) and let (Ȳ , E) be a log-
compactification of a desingularization of Y . Up to blowing-up E, one can assume
that there is a map of log-pairs f : (Ȳ , E)→ (Āg(n), D). The C-PVHS constructed
above induces by pull-back a C-PVHS of length g on (Ȳ , E) whose smallest Hodge
subbundle is the pull-back of L. It follows from the hypothesis and Lemma 2.4 (v)
that the pull-back along f of the line bundle L(−g ·D) is big. A fortiori the line
bundle (f∗L)(−g · E) is big and one is therefore in position to apply the Theorem
3.3. �

If Āg(n) denotes the first Voronoi compactification of Ag(n) and D the reduced
boundary divisor, then Shepherd-Barron [SB06, Theorem 4.1] proved that for any
positive rational number a the Q-line bundle L(−a · D) is ample exactly when
n > 12 · a. In view of Theorem 4.1, we obtain the following result.

Theorem 4.3. If n > 12·g, then all subvarieties of Ag(n) are of maximal cotangent
dimension (hence a fortiori of general type).

5. Hyperbolicity of arithmetic locally symmetric varieties

5.1. Generalities on bounded symmetric domains and their quotients.
To fix the notations and help the reader which is not familiar with arithmetic lo-
cally symmetric varieties, we collect in this section some facts about them that
will be used in the sequel. References include [AMRT75, chapter III §2] and
[Del71, Del79, Hel78, Mil13, Mok89].
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Let D be a bounded symmetric domain, i.e. a bounded connected open subset
in some Cn such that every z ∈ D is an isolated fixed point of an holomor-
phic involution. We denote by Aut(D) its group of holomorphic automorphisms,
and by Is(D) its group of isometries with respect to the riemannian structure de-
fined by the Bergman metric (cf. [Mok89, chapter 4]). Both Aut(D) and Is(D)
are semi-simple real Lie groups with finitely many connected components, and
Aut(D)+ = Is(D)+ is a semi-simple real Lie group with trivial center. In particu-
lar, Is(D)+ = Ad(g) ⊂ Aut(g) where g is the Lie algebra of Is(D) and + denotes the
connected component of the identity in the euclidean topology. (In fact, it is known
that Is(D) = Aut(g).) Let G be the connected component of the identity subgroup
of the real algebraic group Aut(g), so that G(R)+ = Aut(D)+ ⊂ Aut(g)(R). We
call G the real algebraic group associated to D. It is a connected semi-simple real
algebraic group of adjoint type. For every z ∈ D, the subgroup Kz ⊂ G(R)+ of
biholomorphisms fixing z is a maximal compact subgroup of G(R)+. Choosing a
basepoint z for D, we have an identification D = G(R)+/Kz.

We call D irreducible when G is simple. In general, D can be decomposed uniquely
as a product of irreducible bounded symmetric domains, and this decomposition
corresponds to the decomposition of G as a direct product of its simple subgroups.
The rank of D is by definition the rank of the real algebraic group G, i.e. the
dimension of a maximal split torus. It is denoted by rkD.

A subgroup Γ of Aut(D) is called arithmetic if there exists a Q-form GQ of G
and an embedding GQ ↪→ Gln defined over Q such that Γ is commensurable with
GQ(Q)∩Gln(Z), i.e. the intersection is of finite index in each. This property turns
out to be independent of the embedding. Given a Q-group GQ, a subgroup Γ ⊂
GQ(Q) is called neat (cf. [Bor69, §17.1]) if for any representation GQ → Gln defined
over Q and any element γ ∈ Γ, the subgroup of C∗ generated by the eigenvalues of
the automorphism of Cn associated to γ is torsion-free. In particular, Γ is torsion-
free. Moreover, any arithmetic group admits a finite-index neat subgroup.

Definition 5.1. An arithmetic locally symmetric variety is a complex analytic
space which is isomorphic to a quotient of a bounded symmetric domain D by an
arithmetic subgroup Γ ⊂ Aut(D).

It follows from the work of Baily-Borel [BB66] that every arithmetic locally sym-
metric variety X = Γ\D admits a canonical compactification by a normal projective

variety that we denote X
∗
. In particular, X admits a canonical structure of quasi-

projective variety. However, Igusa and others have shown that the singularities of

X
∗

are very complicated in general. In order to address this problem, Mumford et
al. [AMRT75] have introduced the collection of so-called toroidal compactifications
of X, which are algebraic spaces with only quotient singularities. These compact-
ifications are not unique, they depend on the choice of a combinatorial data Σ.
Moreover, when Γ is neat, it is always possible to find a toroidal compactification

X
Σ

of X such that (X
Σ
, D) is a smooth projective log-compactification of X, where

D := X
Σ − X. For any toroidal compactification X

Σ
, the identity map X → X

can always be extended to a holomorphic map X
Σ → X

∗
.
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When D is irreducible, the group of isomorphism classes of G(R)+-equivariant
holomorphic line bundles on D is infinite cyclic. We denote by L the generator such
that the canonical bundle of D is a positive power of L. When D is reducible, one
defines L to be the tensor product of the G(R)+-equivariant line bundles obtained
as before. For any arithmetic subgroup Γ ⊂ G(Q), the holomorphic line bundle L
descends to the arithmetic locally symmetric variety X = Γ\D as a Q-line bundle
(an honnest line bundle when Γ is torsion-free), and has a canonical extension to
any toroidal compactification X̄ that we still denote by L. The obtained Q-line
bundle L on X̄ is called the automorphic line bundle, and it is well-known that it is
Viehweg-big over X (in fact sections of high powers of L define the canonical map
from X̄ to the Baily-Borel compactification of X).

5.2. Proof of Theorem 1.1. Let D be a bounded symmetric domain and G
be the corresponding real algebraic group of adjoint type. Gross [Gro94] (in the
tube domain case) and Sheng-Zuo [SZ10] (in general) have constructed a G(R)+-
equivariant C-PVHS which, among other properties, is effective of weight n =
rkD and whose smallest Hodge bundle can be identified with the automorphic line
bundle. This so-called automorphic C-PVHS of Calabi-Yau type induces in turn a
C-PVHS on any quotient Γ\D of D by a torsion-free discrete subgroup Γ ⊂ G(R)+.
(In the case of the Siegel modular variety, it turns out that we recover by this group-
theoretic construction the C-PVHS considered in section 4.) An easy adaptation
of the arguments of section 4 yields the following criterion.

Theorem 5.2. Let X = Γ\D be a quotient of a bounded symmetric domain D by
a neat arithmetic lattice Γ ⊂ G(R)+. Let rD = rkD be the rank of D. Assume
that the following condition (∗) is satisfied: for some smooth projective toroidal
compactification X̄ of X with boundary divisor D and automorphic line bundle L,
the line bundle L(−rD ·D) is Viehweg-big over X.
Then all subvarieties of X are of maximal cotangent dimension (hence a fortiori of
general type).

It is easily seen that the condition (∗) is independent of the chosen compactifica-
tion. Moreover, if Γ satisfies (∗), then any finite index subgroup of Γ satisfies (∗)
too. To prove Theorem 1.1, we will now explain that (∗) is always satisfied when
Γ is small enough.

Fix a Q-form GQ of G and an embedding GQ ↪→ Glm defined over Q, and con-
sider the arithmetic locally symmetric variety X associated to the arithmetic group
GQ(Q)∩Glm(Z). For any positive integer n, we have the finite cover πn : X(n)→ X
associated to the principal congruence subgroup

Γ(n) := GQ(Q) ∩ ker(Glm(Z)→ Glm(Z/nZ)).

For any choice of combinatorial data Σ, the map πn : X(n)→ X extends canonically
to the corresponding toroidal compactifications πn : X̄(n) → X̄. Since the Q-line
bundle L is Viehweg-big over X, the same is true for the Q-line bundle L(−ε ·D)
for any ε > 0 small enough. Applying Lemma 2.4 (v), we infers that the Q-line
bundle π∗n(L(−ε·D)) is Viehweg-big over X(n). Since the map πn is highly ramified
over D [Mum77, pp. 269-272], it follows that the condition (∗) is satisfied for n big
enough. Therefore we have proved:
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Theorem 5.3. Let D be a bounded symmetric domain and G be the corresponding
real algebraic group of adjoint type. Fix a Q-form GQ of G and an embedding
GQ ↪→ Glm defined over Q, and denote by Γ(n) the associated sequence of principal
congruence subgroups. Then, for n big enough, all subvarieties of Γ(n)\D are of
maximal cotangent dimension (hence a fortiori of general type).
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